Understanding the aggregation induced emission enhancement for a compound with excited state intramolecular proton transfer character.

نویسندگان

  • Rui Hu
  • Shayu Li
  • Yi Zeng
  • Jinping Chen
  • Shuangqing Wang
  • Yi Li
  • Guoqiang Yang
چکیده

A few of excited state intramolecular proton transfer (ESIPT) compounds have been discovered for their aggregation induced emission enhancement (AIEE). To understand the AIEE mechanism, an ESIPT compound BTHPB (N-(4-(benzo[d]thiazol-2-yl)-3-hydroxyphenyl)benzamide) with simple structure was designed and synthesized. BTHPB showed apparent AIEE property and the emission efficiency was observed as high as 0.27 in the aggregates. On the basis of viscochromism experiments and calculations employing the linear coupling model, the restriction of the rotation between the two subunits taken place in ESIPT was considered as the main factor for the AIEE. The micro- and femtosecond transient absorption experiments offered evidence for the considerations. Additionally, we also observed a negative effect of aggregation on the fluorescence emission in the system. So the AIEE of ESIPT compound BTHPB originated from the combination effects of positive and negative factors induced by the aggregation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aggregation-induced emission enhancement of polycyclic aromatic alkaloid derivatives and the crucial role of excited-state proton-transfer.

Aggregation-induced emission enhancement (AIEE) phenomenon is observed in the polycyclic aromatic alkaloid derivatives due to the configuration changes in the excited state, which is attributed to intramolecular proton-transfer and the formation of a new structure of enol form.

متن کامل

Zn2+-triggered excited-state intramolecular proton transfer: a sensitive probe with near-infrared emission from bis(benzoxazole) derivative.

Near-infrared (NIR) emission can offer distinct advantages for biological applications. A fluorescent sensor, Zinhbo-1, based on bis(benzoxazole) ligand with 2,2'-dipicolylamine (DPA) as receptor, was synthesized. In aqueous solution, Zinhbo-1 demonstrates high sensitivity and selectivity for sensing Zn(2+) with about 10-fold enhancement and nanomolar sensitivity (K(d) = 0.29 nM). Moreover, sen...

متن کامل

Aggregation induced enhanced and exclusively highly Stokes shifted emission from an excited state intramolecular proton transfer exhibiting molecule.

The inner filter effect due to self-quenching dominates the normal emission of dyes at higher concentrations, which would limit their applications. Since normal emission was also observed with aggregation induced emission enhancement (AIEE) active excited state intramolecular proton transfer (ESIPT) exhibiting molecules, two new molecules are synthesized and studied to obtain normal emission fr...

متن کامل

Time-resolved fluorescence study of aggregation-induced emission enhancement by restriction of intramolecular charge transfer state.

Cyano-substituted oligo (alpha-phenylenevinylene)-1,4-bis(R-cyano-4-diphenylaminostyryl)-2,5-diphenylbenzene (CNDPASDB) molecules are studied in solution and aggregate state by time-resolved fluorescence techniques. CNDPASDB exhibits a strong solvent polarity dependent characteristic of aggregation-induced emission (AIE). By time-dependent spectra, the gradual transition from local excited stat...

متن کامل

Zinc binding-induced near-IR emission from excited-state intramolecular proton transfer of a bis(benzoxazole) derivative.

A bis(benzoxazole) derivative with metal-chelating ligand (DPA), Zinhbo-1, exhibits a large fluorescence turn-on effect (up to 10-fold) upon zinc-binding. The metal chelation enables excited state intramolecular proton transfer (ESIPT), giving an additional emission band in the near-IR region (approximately 710 nm) with a large Stokes shift (ca. 230 nm).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 13 6  شماره 

صفحات  -

تاریخ انتشار 2011